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Problems of diffraction of plane elastic and electromagnetic waves at
contours or bodies of arbitrary shape are considered. These problems

are solved by a method developed in [1]. Problems of this type have been
considered, for example, in papers of Sobolev [2], Filippov [3].
Korbanskii [4} and others. The diffraction of plane waves at straight
slits or infinitely sharp edges has been treated in [2,3] by a method
which differs from the one expounded below.

Solutions of problems of diffraction at a circular cylinder and a
sphere are given as examples.

1. Formulation of the general problem of diffraction of
elastic waves and the solution of two-dimensional problems.
In solving two- and three-dimensional problems of diffraction of plane
elastic waves we shall assume that the equations of motion of the
elastic medium which surrounds the body are, in general, nonlinear. The
elastic medium will be taken as isotropic. Nonlinearity of the physical
type will be considered; i.e. we shall consider that the components of
the stress tensor of the elastic medium depend nonlinearly on the com-
ponents of the strain tensor. In other words, while accepting the hypo-
thesis of small strains, we shall consider that the medium does not
obey Hooke’s law and we shall solve problems taking account of small
nonlinear terms in the equations of motion of the elastic medium.

l.et us assume, for instance, that the relation between the components
of the stress tensor and those of the strain temsor have the form
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(Murnaghan’s law of elasticity [5]), where Ay, A, and A, are the in-
variants of the strain temsor; A, u, B, B, and P, are elastic constants.
For B, = B, = B, = 0, we obtain Hooke’s law. In relations (1.1) the non-
linear terms are even functions of the components of the strain tensor.
To obtain an odd relation, the following may be considered:

Ore = Mg + 20 {1 + 1145° + 724)) 8xx 4 Teds® — 27y + 7o - 7o) 4041 +
+ T4dy - T4 (B - 1/43xy2 + Y800 (1.2)

GX'S = 9 {1 + Y?{A{}z '%* YEAI} sxy "' ?QAB {(Sxx "%‘ S!m) g‘x’g ‘é” }fzsngyz}

The expressions for Tyyr Tzt Ty,

and ¢, are obtained by cyclic
interchange of scripts.

However, the equations of motion of the elastic medium are very com-
plicated with relations (1.1) or (1.2). We introduce one simplifying
assumption. We consider those elastic media for which the effect of a
compression on the shear stresses o _, %y, and o_, is smaller than the
effect on the compressive stresses; i.e. we set B, = f; =0 or y, =
Yo = ¥, = 0 approximately, considering the relation between the shear

stresses and the components of the strain tensor to be a linear one,

Let us now turn to the formulation and solution of the problem of
diffraction of a plane elastic wave around an arbitrary contour C
(Fig. 1), taking the instant of time t = 0 for the start of diffraction.

We shall express the components u and v of the displacement vector
in terms of the potentials ® and ¥ of the longitudinal and transverse
waves by means of the formulas

> | IY A av (1.3)

u == ?I+W’ v oy dr

1t can be shown that in the absence of external forces the potentials

satisfy the equations
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0D 2D Q0 \
a(azz+ay=)—W+F(A®)=0, az:HTw
oy a2y Y
(Gt~ =0 =L (1.4)

Here p is the density of the medium, a and b are the velocities of
propagation of the longitudinal and transverse waves, respectively, and

FA®) = B, /p)(AD? or F(AD) = (15/p) (AD)
for relations (1.1) and (1.2), respectively.

Let us consider the problem of the diffraction of an elastic wave or
of a weak shock wave at the contour C (Fig. 1), the contour being
rigidly connected to the elastic medium. In what
follows, we shall restrict ourselves to the pre-
sent problem for definiteness.

For the problem at hand, the boundary condi-
tions for ¢ and Y take the form

(g% t)_‘ hl agl + hz av 8(%2? )

1 om 1 oy on C
92820 1) = 3 55, — 7755, = O

where §, and §, are arbitrary orthogonal coordinates related to the con-
tour C, §, = §,, being the contour itself; h, and h, are the Lamé co-
efficients; g, and g, are the components of the displacement vector of
the medium; e(§,, t) is the magnitude of the strain of the contour C
under the action of the elastic wave. It will be assumed at first that
the contour C is absolutely rigid, i.e. &(§,, t) = 0.

In addition, the potentials 9 and Y must satisfy the conditions
O = P, ¥ =Y, for t<L0, =00, V=¥, fort >0 (1.5
at the front of the reflected wave, where ®) and Y are the potentials

of the incident elastic wave. Wlthout loss of generality, we shall con-
sider the incident wave to be longitudinal, 1i.e.

Dy = 24 (y — ta), Yo =0 for (y—ta) <0 ag = (Adl/(pa?) (1.6)
Dy =¥, =0 for (y—ta)>0, .

Here Ac is the jump in stress at the front of the incident wave, 21
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1s the maximum diameter of the contour and p is the density of the
medium,

Let us introduce the dimensionless variables and parameters

£y =il in ooyl T o= ab /|, by==blu
By =B Y= W¥!F, o= dy il

In what follows we shall omit the subscripts on the dimensionless
quantities for simplicity. In equations (1.3) to (1.5) we set

D, yym) =y b ey, Yyt =9y 1 (L)

The problem of diffraction then reduces to the determination of the
potentials ¢ and y which satisfy the following equations and conditions:

A — T8 L F(AQ =0, Ap— 5 b=
e N o ik v T
@ =19 = U  for 0, @ =Y ==} on the reflected wave
We shall solve system (1.8) by setting
o6y 0 =g (50 gloyn 4P ey D)= 4y 1) (19)

where @, are small quantities of ith order.

Substituting (1.9) into (1.8), we obtain two systems for the deter-
mination of ¢,, v, and ¢,, respectively

djq“ . 1 8?1191 .
Apr— 5 O Ay — gy =0
gy dy b My A gy 9 T (1.10
T - P LI oy vt sy v L CR)

¢ == = 0 for v<CO, @ = =0 on 57

P . .
Ay — S5+ F (Ag) =0 (1.19)

90 onC, =0 fort<<0, G2=0 for v>0 on s-

<
3

As in the case of the problem of diffraction of a weak shock wave
(1] at a contour C, the following theorems hold.

Theorem 1.1. Problem (1.10) is equivalent to a mixed Cauchy problem
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in the space (x, y, 1) or to an auxiliary external problem of flow
around an oblique cylinder which is semi-infinite with respect to the
axis v (1 >>0) and which corresponds to the contour C, the flow con-
sisting of two steady, supersonic streams of ideal gas, M =2, M =
(1 + b 2), at the small angle of attack a.

Theorem 1.2. Problem (1.11) is equivalent to a Cauchy problem in the
space (x, y, 7).or to the problem of diffraction of a weak shock wave
around the contour C in the second approximation [6].

By virtue of Theorem 1.1, using the method of [1], we obtain the
following system of integral equations for the values of ¢, and y; on
the contour C:

19 ¢z, ¥, 1) OV V op
‘Pl(-lo'?/OyTo)~E3—;{S[ N 3 h ,7§1]d5}
b3}

b o, 9o, ) = _Z%ai{wwl(x y. 1) %_%%]dc}

p2%Y

(1.12)

where X and X, are the parts of the surface of the cylinder in the
auxiliary problem which are cut off by the cones of influence from the
point (xo, Yo TO); the Volterra function 1is

R PO Tk Vit —1—@—2"— (jo—y)?
V (g0 — 2)® + (yo — y)?

Vito—1,...)=V({d(te—1),...) {1.13)

Analogously
@2 (T0: Yo T0) = g g |\ T - d +g\g (8 n, ©) Vdgdndt} (114

where T is the volume bounded by the surface of the cylinder, the sur-
face of the cone of influence from the point (xo, Yo To) and the wave
surface of the auxiliary problem.

Problem (1.8) can be generalized [1) to
the case of a deformable contour and to the
case when

Dy (r,y,7) = f(y — 1) (1.15)

The problem of diffraction of an incident
transverse wave is solved analogously and,
therefore, also that of an arbitrary elastic
wave with Fig. 2.
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Dy (,9,7) = a(y — 1)
Yo (z, ¥, 1) = (Acy / pa®) (y — b1) (1.16)

1. Let us consider the special case of the problem in which the con-
tour C is a circle of unit radius. In this case the solution of the
problem is given by formulas (1,12) and (1.14), where we must set

a o dy . dy
—_ =, - =8 e, = = 8 f =1
agl ar a_El sin 8&2 cos or r

Here (r, 8) are polar coordinates.

It is possible to construct an asymptotic solution of the problen
(1.10) to (1.11) for large values of T for the case of the circle. As a
matter of fact, the radius of the reflected wave depends only slightly
on 8 for large T, and it is possible to consider approximately that

Q1 (2, 9,7) = —a sin® f; (r1), Py (2, y,7T) =0 9059 fa (ryT) (1.17)

It can be shown that

B = (6@ K oean, 00 =t e Koy v
P11
L i
€ g) = L — Ky (gb=Y) + gb=! Ky’ (gb)
V9= TR @ K ) | @K () Kx (@b
Calg) = — Ki(9) + gKy' (g)

7 — Ky () Ky (gb~)+ 1KY (9) K1 (gb™))

where L is the contour of integration used for the inverse Laplace
transform, K; is the Bessel function of imaginary argument. Analogously,
by setting

@2 (z, 4, T) =a? [f3 (r,7) + cos 204 (r, 1)) (1.19)
we obtain
fsr.v) =5 ;\ (4o (r, @) Ko (rg)+By (r, @) 1o (r)] €%7dg (1.20)
L
fa(ryT) =2_1',\ [4, (r, @) K2 (rq) 4 B, (n, 9) I(rg)] e¥dg
L

where
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Ai(r, Q) = — {S (— O Fy (r, ) Ty, (rg) rdr +

, [oe] oo

I, . : .
+ ﬂ’%(— 1) Fa(r, q) Iy, (r) rdr—& (— O Fa(r, ) Ky, (rg) rdr }

i+1(q) § 1
e
Bi(r,g) =— \ (= ' Fa(r, @)Ky (rq) rdr (t=0,1)
;

Fa(r, q) = g Fy(r, 1) 095, F(2,9,7) = (1 — cos 20) F1 (r, 7)

0

The remaining parameters of the problem may be determined from the
values of 1. Y1 and P, which have been found. In particular, the magni-
tudes of the radial stress O,.., the hoop stress Opg and the shear stress
Og, on the circle can be determined. In the case of a deformable circle,
it is also possible [6] to construct a solution for large T.

If the relation between the strain of the circle &(9, T) and C
Uyy) has the form

£0,7) = k(0 45 +0,,) /2[00 + p) pa?) (1.21)
it is necessary to set

— Ky (™) + b1 Ky’ (gb7)

1
c - 1
19 g — K, () Ky(gb™") + ¢! K" (g) K (gb~%) — kyg®b—' Ky (g) Ky’ (gb~?)
C, (q) = _1__ — Ky (@) + gKy' (9) — Ky ¢°K, (g) .
z g — Ky (g) Ky (gb=1) + ¢%~1 Ky’ (g) K, (gb~1) —k1g®~1K; (q) Ky’ (gb1)

in formulas (1.18). In formulas (1.20), Ai and B, (¢ = 0; 1) are changed

in a corresponding manner.

2. Let us now consider the more complicated problem when the contour,
in the form of a circle of unit radius, for instance, is in & medium
bounded by one or two parallel walls and the front of the incident
elastic wave is normal to the walls (Fig. 3).

The effect of the walls can be taken into account by considering, in-
stead of a single circle, a row of circles whose centers are located on
a straight line at a distance 211 apart, the front of the elastic wave
being parallel to the line of centers of the circles. We select the dis-
tance l1 in such a way that the effect of the walls is present after
the elastic wave passes the circle.
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Theorem 1.1 remains in force in this case also, the only difference
being that we shall consider an infinite number of cylinders in the
suxiliary problem instead of one cylinder, and
that the auxiliary problem will bhe described by
system (1.8) or (1.10) to (1.11) with boundary
conditions specified on 811 the cylinders.

The solution of systems (1.10) to (1.11) will
have the form

i
Ty 2 T T e
Oy {Zgy Yo T) AT

1 o

Lor Yor To) = a0
i (24, ¥or To) 5m . {g
;

133
9
and, analogously (1-22) z
1 4 v
Pg {xos ar To) =2?§;,;{SS‘?2 {z, ¥, T§%35 “+ K]
s

+\\§F(x,y,r)wxdydr} (F=0; +1: +2;...

G (1.23) Fig. 4.

1
Here Zi and Eil are the parts of the surfaces of the cylinders which
are cut off by the cones of influence from the point (24, Yqr Tyl and
Ti is the corresponding volume, which is bounded by the surfasce of the
cone of influence, the surfaces of the cylinders Xi and the common wave
surface.

It is easy to see that in (1.22) and (1,23) the g¢,, ¥y and @, under
the integral a&re unknown only on the surfaces 29 and Eg}, since the
values of the functions ¢,, ¢, and @, on the remaining surfaces coincide
with values on the surfaces ZO and 201 found for earlier values of the
dimensionless time 7. Solutions (1.22) and (1.23) cap also be general-
ized to the case of a deformable contour,

2. Formulation and solution of the three-dimensional proh-
lem of diffraction of a plane wave. This problem can be solved
under quite general assumptions. For simplicity of exposition we shall
consider the problem of diffraction of an elastic wave around a sphere
of unit radius (Fig. 4) under the limitations explained at the start of
Section 1.

We shall formulate the problem in spherical coordinates (r, 8, 9).
Dy virtue of the symmetry of the problem, it is obvious that the un-
known functions do not depend on the angle ¥. The displacement vector
has only the two components
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oD 1 a , .
qr:T+r—siW-(9—6(51n6‘F), 99:—————— ("‘F) 2.1

The potentials ¢ and ¥ satisfy the equations

1 9 [ .00 1 3 (. oD\ 8D

+ 5 (P50 + msme (8 BE)ZW“F(A(D) 29
1 0/, 0¥ 1 3 oY 1 '
7 or (r or >+ risin® 09 (Sl 8 ) Fros

Assuming that the diffraction of the elastic wave around the sphere
begins at T = 0, and setting

O =>D,+¢, +¢,+ ..., ¥ = 4, D, =a(z— 1) (2.3)

we reduce the problem to solution of wave equations for ¢,, y, and ¢,
with the boundary and initial conditions

a% 3?2 - 02

%: A9y, 6;1)2: Ap, + F (A¢y), '%z A, b?

a 1 a 0

% = —acosh — —— - (sin 6 y), 0‘32 =0 (2.4)
a .

l;l:‘ :—-a51n9—|—7e——t|)1 for r=1

P, =@y =%, =0 for <0, ¢ =¢ =9, =0 for >0 ons-
Thus, we have the following theorem.

Theorem 2.1. The problem of the diffraction of an elastic wave around
a sphere, described by system (2.4), is equivalent (6] to a mixed Cauchy
problem or to an auxiliary problem of flow around the corresponding
four-dimensional oblique cylinder which is semi-infinite with respect to
the T-axis, the flows consisting of two steady supersonic streams of
ideal gas, M = {2 and M = {(1 + b-2), at the small angle of attack a.

Solving the auxiliary problem by a method analogous to the method of
Volterra for the three dimensional case, we obtain

@ (1 00, 70 = o oo ({00 (1,0, 0 % — %y do e av)
T

t 7 J&i&cpz (1,0, 1) - dodvdd +

o

P (1, by, 7o)

T An UT02

T QR\\ F (or, 0, 1) V'drdddt dﬁ} (2.5)

q

¥y (1, O T) = 1 (e a0, 2 _ 2y lagar ao

a1y°

Ly
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Here T, and T, are the parts of the surface of the four-dimensional
cylinder cut off by the cones of influence [4] from the point (1, 8,
Ty 00) [6]; 0 is the four-dimensional volume bounded by the surfare of
the cone of influence, the surface 7b and the wave surface; the function
e 0 VG S G T
Videg =1, .. =V d{ty—1),.... {2.6)

As in the two-dimensional problem, an asymptotic solution of problem
(2.4) can be found for large 1. Tt can be shown that for large values
of 1

@, (£, 0, 1) == :( 0; v \( (g) Ksy, (rq) e9°dyg
. @)
G001 = = 2N @ Ko b e dg
iy

where

c 1 gb K, ()~ Koy (gb7h)
S(Q) ¢ ,721;—}[\'3;2: (‘?)K“,,(’!’bﬂl) .{, ’]K{\;,(‘H }\ :;b 1) . )A8 ((})K :’b l)

¢ (() 1 q]\',‘,: () = ?\3,2 ()
A=y T R b ) K, gy RS (b ) = 2K, (g K (4h )

The solution for the function @,{r, §, T) can be written out analo-
gously. Problem (2.4) can be generalized [1] to the case of a deformable
sphere and for

@, (z, Yy 2, ) == f{z— 1) {2.8)

3. On the theory of diffraction of plane electromagnetic
waves. Nonsteady problems of diffraction of plane electromagnetic
waves around convex, perfectly conducting bodies of revolution will be
considered, when the wave is propagating along the axis of revolution.
We shall assume that a plane electromagnetic wave is incident on a
perfectly conducting body whlch 15 surrounded by a homogeneous dielec-
tric with the parameters ¢’ and 1?. The wave excites surface currents
on the surface of the hody; these, in turn, become the source of the
scattered or diffracted field.

The electric and magnetic intensities E and H satisfy Maxwell’s
equations

L v -0, anE-—EE 0 givE=0@

curl H = T ¢ Ot
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and the boundary condition

nx [E, + EJ =0 (3.2)

on the surface of the perfect conductor, where n is the normal to the
body; E; and E, are the electric intensities of the incident and
scattered waves, respectively, on the surface of the body; and ¢ is the
speed of light.

In view of the symmetry of the problem relative to the axis of rota-
tion, we obtain

Ea = s ot

1 90 [ hs 0

2 1 0 [hs @
hlhg aég

A A . 1 -]
(3.3)

E: T= H: = H: :O }1, = e i (92(}13[_[)

& ¢ hihs 0%:0t

where the function T is called the Hertz potential.

In the derivation of relations (3.3) the Hertz vector G is taken as
G = {0, eI1, 0} (3.4)
1f

G = {e,11, 0, 0} 3.5)
then h T should appear in the parentheses in (3.3) instead of h,TI.

Substituting (3.3) into (3.1), we obtain the wave equation in general
orthogonal curvilinear coordinates §,, §, and §, for the potential T

1 l I <}11}12’13 all

a hihahs o1 e°u’ a2l
i Los (e 55 )+ as )

B Ot = T g (3'6)

Here hl' h2 and h3 are the Lamé coefficients.

Since the body is one of revolution

h], = hl (glv §2)! hz (§17 g2) = hzv hs = hsl (El’ §2) / l 1 - gsz

the coefficients of equation (3.6) do not depend on §,, and, therefore,
the function N = ﬂ(§l, §,). Condition (3.2) assumes the form

a h a
a_g‘l[ﬁ a_gz(hzn)] =0 for &1 = Zuw (3.7)

where &, = §,, is the equation of the surface of the body.

The potential T also satisfies the conditions
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=1, (x,y, 218 fort<o, H=TI4(z,y, 21 for t>0 (3.8)

on the boundary of the scattered or diffracted field. We set

H (x’ yv Z, t) - HO (33, yi z, t) + (P (x’ ?/: Z, t) (3'9)

where Tl is the potential of the incident field, and substitute (3.9)
into equation (3.6) and into conditions (3.7) and (3.8). We then obtain
the following system to determine the perturbed potential o(x, y, z, t):

1 [ 0 <h2h3h1 8&) + I (hlhzhs—(z(_‘)-)] - g°uo aﬁE‘

h1h2h3 3_§1 hl2 6§1 822 h22 6&2 c2 ot (3 10)
o0 _ o, 4 ([, 0 (1 hs )OI | Mk O (ks '
F T T 0 h S{h2 3t (1n T )agz + % o (7; In hz) H} dg;

for E&x= L

¢ =0 for <0, =0 ons-

Let us consider some special cases,

1. Diffraction of a plane electromagnetic wave around an infinite
circular cylinder. We shall assume that the front of the incident
electromagnetic wave is parallel to the :z-axis. Setting, for simplicity

1, —a (y— ¢ z) (3.11)
VEOP'O

we reduce system (3.10) to the form

(3.12)
-
=0 fort<<0, ¢=0, fort>0ons-

Here a is some small quantity introduced into the solution of the
problem for convenience and which can be eliminated at'the end; r and 0

are polar coordinates. -

It is easy to see that system (3.12) also describes the problem of
diffraction of a weak shock wave around a circle [1]. Therefore, [1]
o(r, 6, t) on the circle satisfies the linear integral equation

@ (1,0,,70 =2% &%{gg[cp(i,e r)‘;_‘:l—%‘f_lv]ac} (3.13)
z

rn=r/rgy T =at/rg a=c/}/p°e°
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where Z is the surface of the cylinder in the auxiliary problem cut off
by the cone of influence from the point (r/rg =1, 60. To).

For large values of T (or of t)

. 1 0 K;y(ryq) qor dg
¢ {r0,1) = 2m’§‘—__1{;' @ 3 7 (3.1%)
If
Helz,y, 2, 8) = fy/re — 1) (3.15)

then, using the Duyhamel integral, we obtain

T

@1 (rn8,7) = £ (0) @ (r1, 8, 7) +g f e (r0,7 —E)dt (3.16)
0

where ¢, is the Hertz potential in case (3.15). For large values of T

T

@ (ry,0,7) = Sin® Q[f«»ﬂf ) eﬁdg]ﬁ.(_’ﬂ eqf%g_ 3.47)
L 5 .

2ni Kl (q)
0

In the case in which the front of the incident wave forms an angle Y
with the z-axis, the problem reduces to that solved above [6] where the
quantity T must be replaced by the quantity

7N =tan" 17 (rsin~1l 1 — 2)

2. Diffraction of a plane electromagnetic wave around a sphere. We
shall consider that the incident electromagnetic wave is propagating
along the z-axis in the positive direction (Fig. 4). In dimensionless
spherical coordinates (r, 0, @) the perturbed Hertz potential ¢ satis-
fies the system

I Y, 2 OV S ey RO
r* or (r 6r>+ rtsin0 ae(sm E)ﬂa‘tz (3-18)
"al; = —acos® —(Il, +¢) for r — 1

=0 fort <0 on S

Here it is also assumed that
Ny(z, 9,2, 1) =a (z —1)

It is not difficult to see that problem (3.18) is equivalent to the
problem of diffraction of a weak shock wave around the sphere [6] and,
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therefore

o W g o, .
910w = 1 W{SSS[@{LW}W % ]éedma} (3.19
T

where 2 has the form (2.6); T is the hypersurface of the appropriate
four-dimensional cylinder r = 1 which is cut off by the cone of in-
fluence from the point (r = 1, 60, ﬁo, Ty

If case (3.5) is considered, the second condition in system (3.16)

takes the form

“?f{’ﬁ:__‘a cos@ for r =1
ar

and problem (3.18) is identical to the problem of diffraction of a weak
plane shock wave around the sphere, For large values of T we may set

g aT = — 2005 8/1° {r,T } {320

It can be shown that

- K. gt .
AT = ;‘“ bV \ Akl 4 (3.21)
=n V r L q}\':u; {4 (g7t — 1) K‘W({I)

In case (3.5), we set
¢(rB,1) . —a el {7 {r,T)

K., r'q) e dq
o } - __ 27 3.1
;2 {".} ‘{} N ;,‘C ;;’ E\ (ngiz §Q) — E\“: {i’g} Bl (

Problem (3.18) can be generalized to the case
Motrow 50 - j—D)

3. Solution of system (3.10). Theorem 3.1. The general problem of
diffraction of a plane electromagnetic wave around an Arbitrary convex
body of revolution is equivalent to the problem of flow around the cor-
responding semi-infinite four-dimensional cylinder £, = §10, the flow
consisting of & supersonic stream of ideal gas, M =2, at a small angle

of sattack.

We obtain an integral equation of the form

q:(x z;,.,r}(ﬂ‘ VE g « b .
§ {Tgs M Zaw To) =2 i o {‘\\\{ g T E}I €§.Eg(3:~,3(fr§ (3.0



The theory of diffraction 1591

for the potential ¢(x, y, z, t) on the surface of the arbitrary body of
revolution. Explicit asymptotic expressions for ¢ at large T can be ob-
tained only for the circular cylinder and the sphere.

Analogously, problems of diffraction of plane electromagnetic waves
around bodies of arbitrary shape (or around a group of bodies) can be
solved by reducing them to the corresponding mixed Cauchy problems in
the space (x, y, z, T).

Note. Problems of diffraction of elastic and electromagnetic waves
reduce to the solution of the corresponding singular integro-differential
equations. To solve these equations numerically it is more convenient,
for instance in equations (1.12), (1.14), (1.22), etc., to introduce the
functions

K()(TO_T1 Ty — X, yo——y) = ngdr’ I\’l(TO—'Tv To— X, Yo :y) :SKdt

The function K is continuous on 2 and goes to zero along the entire
characteristic part of the boundary of the region Z; the function K1 is
continuous on 2 and goes to zero at the point (zo, Yo To). Therefore,
by covering the region 2 with a sufficiently fine net, it is possible
either to eliminate the neighborhood of the point (%, Yo, Tg) OF to
approximate the integral expressions in the neighborhood of (xo, Yoo 10)
in some manner and to reduce the numerical solution of the integro-
differential equations to simple quadratures over the remaining part
of Z.

The uniqueness of the solution of the given integro-differential
equations follows from their very construction, or can be rigorously
proved by the usual methods. The existence of the solution is proved by
the method of Hadamrd.
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