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Problems of diffraction of plane elastic and electromagnetic waves at 

contours or bodies of arbitrary shape are considered. These problems 

are solved by a method developed in [d. Problems of this type have been 
considered, for example, in papers of Sobolev [21, Filippov [31, 
Korbanskii [41 and others. The diffraction of plane waves at straight 

slits or infinitely sharp edges has been treated in [2,31 by a method 

which differs from the one expounded below. 

Solutions of problems of diffraction at a circular cylinder and a 

sphere are given as examples. 

1. Formulation of the general problem of diffraction of 
elastic waves and the solution of two-dimensional problems. 
TV solving two- and three-dimensional problems of diffraction of plane 

elastic waves we shall assume that the equations of motion of the 

e1 Tstic medium which surrounds the body are, in general, nonlinear. ‘Ihe 

+=lastir medium will be taken as isotropic. Nonlinearity of the physical 

type will be considered; i.e. we shall consider that the components of 

the stress tensor of the elastic medium depend nonlinearly on the com- 

ponents of the strain tensor. In other words, while accepting the hypo- 

thesis of small strains, we shall consider that the medium does not 

obey Ilooke’s law and we shall solve problems taking account of small 

nonlinear terms in the equations of motion of the elastic medium. 

Let us assume, for instance, that the relation between the components 

of the stress tensor and those of the strain tensor have the form 
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(Mttrnaghan’s law of elasticity [SI ), where A,, A, and A, are the in- 
variants of the strain tensor; A, wS pf,p2 and p3 are elastic constants. 
For p1 = pz = p3 = 0, we obtain Hooke’s law. In retations (1.1) the non- 
linear terms are even functions of the components of the strain tensor. 
To obtain an odd relation, the following may be considered: 

The expressions for o yy’ azzfl (ryz and =zx are obtained by cyclic 
interchange of scripts. 

However, the equations of motion of the elastic medium are very com- 
plicated with relations (1.1) or (1.2). We introduce one simpl’ifying 
assumption. We consider those elastic media for which the effect of a 
compression on the shear stresses o 

xr’ oyz and OXI is smalli er than the 

effect on the compressive stresses; 1-e. we set PI - p3 = 0 or y1 = 

YZ = Yd = 0 approximately, considering the relation between the shear 
stresses and the components of the strain tensor to be a linear one. 

Let us now turn to the formulation and solution of the problem of 
diffraction of a plane elastic wave around an arbitrary contour C 
(Fig. I), taking the instant of time t = 0 for the start of diffraction. 

We shall express the components u and v of the displacement vector 
in terms of the potentials 0 and ‘? of the longitudinal and transverse 
waves by means of the formulas 

a@ N Arlt 
u := >;++J 

sty 
?‘? ̂  “.” -67 

- --- 
(3 t 

{1.3) 

It can be &own that in the absence uf external forces the potentials 

satisfy the equations 
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a2 ( ++F(AcD)=O, a 2 _n+@ 
P 

v(f$+yJ-$=o, b2 = $ (1.4) 

Here p is the density of the medium, a and b are the velocities of 

propagation of the longitudinal and transverse waves, respectively, and 

F (A a) = (B2 ! P) (A@)’ or F (A Q) = (rs I P) (A Q)” 

for relations (1.1) and (1.2), respectively. 

Let us consider the problem of the diffraction of an elastic wave or 

of a weak shock wave at the contour C (Fig. l), the contour being 
rigidly connected to the elastic medium. In what 

follows, we shall restrict ourselves to the pre- 

sent problem for definiteness. 
Y 

C 
For the problem at hand, the boundary condi- 

tions for @ and I take the form 
X 

s 

41 (k27 t) = + g + & g = E (E2, t) 
S- 

q2 (E2, t) = & F - + 2 = 0 

on c 
+ 

Fig. 1. 
2 1 . 

where El and t2 are arbitrary orthogonal coordinates related to the con- 

tour C, El = cl,, being the contour itself; h, and h, are the Lam& co- 

efficients; q1 and q2 are the components of the displacement vector of 

the medium; ~(5~’ t) is the magnitude of the strain of the contour C 

under the action of the elastic wave. It will be assumed at first that 

the contour C is absolutely rigid, i.e. ~(t~, t) = 0. 

In addition, the potentials 0 and 1 must satisfy the conditions 

0 = CD,, Y = Y, for 

at the front of the reflected 

of the incident elastic wave. 

sider the incident wave to be 

t<O, CD = CD,, Y = Yy, for t > 0 (1.5) 

wave, where (Do and I, are the potentials 

Without loss of generality, we shall con- 

longitudinal, i.e. 

@cJ = do (y - t4, Y. = 0 for (!/--fa) 50 a, = (Aol/(pn2) 

a0 = Yy, = 0 
(1.6) 

for (y - tn)> 0, 

Jlere a.a is the jump in stress at the front of the incident wave, ?I 
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is the maximurr diameter of the contour and p is the density of the 

medium. 

I& us introduce the dimensionless variables and parameters 

In what follows we shall omit the subscripts on the dimensionless 

quantities for simplicity. In equations (1.3) to (1.5) we set 

The problem of diffraction then reduces to the determination of the 

potentials up and 1y which satisfy thtit following equations and conditions: 

We shall solve system (1.8) by setting 

where qi are small quantities of it.11 order. 

Substituting (1.9) into (1.8), we obtain two systems for the deter- 

mination of rp,, ~1~ and cp,, respectively 

(1.11) 

As in the case of the problem of diffraction of a weak shock wave 

Cl1 at a contour C, the following theorems hold. 

Theorem I,f. Problem (1.10) is equivalent to 8 mixed Cauchy problem 
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in the space (x, y, T) or to an auxiliary external problem of flow 

around an oblique cylinder which is semi-infinite with respect to the 

axis T (T > 0) and which corresponds to the contour C, the flow con- 

sisting of two steady, 

J(1 + b-9, 

supersonic streams of ideal gas, M=J2, M= 
at the small angle of attack a. 

Theorem 1.2. Problem (1.11) is equivalent to a Cauchy problem in the 

space (x, y, T) .or to the problem of diffraction of a weak shock wave 

around the contour C in the second approximation [61. 

By virtue of Theorem 1.1, using the method of [II, we obtain the 

following system of integral equations for the values of q~ and q+ on 

the contour C: 

where Z and 1, are the parts of the surface of the,cylinder in the 

auxiliary problem which are cut off by the cones of influence from the 

point (x0, yo, TV); the Volterra function is 

v = Ill (to-t) + V(to--2)2- (IO -42 - (yo- y)' 

.r/ (Lo- XT + (Yo - Y? 

Vl (To - T, . ..)=V(b(T,-T),...) 

Analogously 

(1.13) 

where T is the volume bounded by the surface of the cylinder, the sur- 

face of the cone of influence from the point (x,,, y,,, -ro) and the wave 

surface of the auxiliary problem. 

Problem (1.8) can be generalized [II to 

the case of a deformable contour and to the 

case when 
0 

@o (I, 99 4 = f (Y - 4 (1.15) 

‘Ihe problem of diffraction of an incident 

transverse wave is solved analogously and, 

therefore, also that of an arbitrary elastic 

wave with Fig. 2. 
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1. Let us consider the special case of the problem in which the con- 

tour C is a circle of unit radius. In this case the solution of the 
problem is given by formulas (1,12) and (1.14). where we must set 

a a 
a%1 ar ’ 

dy = sin0 dy =_- ~0~0 
6 ’ a%2 

for r=l 

Here (r, 8) are polar coordinates. 

It is possible to construct an asymptotic solution of the problem 

(1.10) to (1.11) for large values of T for the case of the circle. As a 

matter of fact, the radius of the reflected wave depends only slightly 

on 9 for large T, and it is possible to consider approximately that 

01. (x9 Y,T) = -a sin0 fI (r,z), I#~ (2, y,T) =a cos9 fz (r,t) (1.17) 

It can be shown that 

j1 (r, T) = 2$ CC1 (q) Kl (rg)e*‘Q, 
is I, 

c, (4) = $ - K1 (qb-') $ qb-’ R1’ (qb-‘) __-- ____- 
- K1 (q) Kl ((lb-‘) + g26-‘Kl’ (q) Kl’ (vf+) 

(1.18) 

c, (q) = _$. --- - KI (cl) -i- qK1’ (9) -~-~ 
- K, (q) K, (qb-‘)+q2b-‘K1 (q)K1’ 

where L is the contour of integration used for the inverse Laplace 

transform, K, is the Bessel function of imaginary argument. Analogously, 

by setting 

we obtain 

(1.20) 
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co 

Ai(r, !7) = - IS (- 1)‘Fa (r, ql ‘i+l (rq) rdr + 
r 

z’i+lw m +--- s KI+w 1 

(-- l)i Fz (r, q) Ii+1 (rq) rdr - r (- l)is’ Fz (r, q) Ki+l (rq) rdr ] 

1 

Bi(r, q) = - y(- l)ifl F,(r,q)K. IS1 (rq) rdr (t = 0,l) 

r 
00 

Fe (r, q) = F1 (r, z) evq’dt, F(r,y,z)=(l--cos20)Fl(r,r) 

The remaining parameters of the problem may be determined from the 

values of 91, ~1 and q2 which have been found. In particular, the magni- 

tudes of the radial stress u , the hoop stress a06 

06, on the circle can be detL:mined. In the case of 

it is also possible 161 to construct a solution for 

If the relation between the strain of the circle 

oyy) has the form 

e (6, T) = k, (u TT + (J vu) / 2 [(h + CL) pa21 

it is necessary to set 

and the shear stress 

a deformable circle, 

large f. 

~(6, T) and (a,w + 

(1.21) 

c, (q) = -!- 
____-- KI (qb-‘) + qb-’ KI’ (qb-‘) 

q - K1 (q) K,(qb-‘)i_(q) K,’ (qb-‘) - klq’b-’ K, (q) Kl’ (qb-‘) 

.c, (q) = 1. ~ - KI (q) + qK1’ (q) - h qaK, (q) 
q - K, (q) K, (qb-‘) + q2b-’ Kl’ (q) K,’ (qb-‘) --k,qSb-lK1 (q) KI’ (qb-‘j- 

in formulas (1.16). In formulas (1.20), Ai and Bi (i = 0; 1) are changed 

in a corresponding manner. 

2. Let us now consider the more complicated problem when the contour, 

in the form of a circle of unit radius, for instance, is in a medium 

bounded by one or two parallel walls and the front of the incident 

elastic wave is normal to the walls (Fig. 3). 

The effect of the walls can be taken into account by considering, in- 

stead of a single circle, a row of circles whose centers are located on 

a straight line at a distance 211 apart, the front of the elastic wave 

being parallel to the line of centers of the circles. We Select the dis- 

tance 1, in such a way that the effect of the walls is present after 

the elastic wave passes the circle. 
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Theorem 1.1 remains in force in this case also, Me only difference 
being that we shall consider an inPinite number of cylinders in the 

auxiliary problem instead of one cylinder, and 
that the auxiliary problem will be described by 
system (1.8) or (1. lo) to (1.11) with boundary 
conditions specified on aI the cylinders. 

The solution of systems (1.10) to (I. 11) will 
have the form 

and, analogously 

Fig. 3. 

- 

Fig. 4. 

Here ‘i and xi1 are the parts of the surfaces of the cylinders which 
are cut off by the cones of influence from the point (I,,, yOB T,,), and 
Tl is the corresponding volume, wbfcfi is bounded by the surface of the 
cone of influence, the surfaces of the cylinders xi and the common save 
surface. 

It is easy to see that in (I.221 and (I. 23) the cpl* ~1 and tp, under 
the integral are unknown only on the surfaces E., and Eel* since the 
values of the functions ‘pl, ~1 and q2 on the remaining surfaces coincide 
with values on the surfaces 1, and x,1 found for earlier values of the 
dimensionless time T. SotutZons (1.22) and (1.23) 08~ also be geoersl- 
ized to the case of a deformable contour. 

2. Formulation and solution of the three-dimensional prob- 
lem of diffraction of a plane wave. ‘Ihis problem can be solved 

under quite general assumptims. For simplicity of exposition we shsXZ 

consider the problem of diffraction of an elastic wave around a sphere 
of unit radius (Fig. 4) under the limitations explained at the start of 

Section 1. 

We shall formulate the problem in spherical coordinates (r, 8, 6). 
I$ virtue of the symmetry of the problem, it is obvious that the un- 

known functions do not depend on the angle @. The displacement vector 

has anl y the two components 
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‘Ihe potentials 0 and ‘I’ satisfy the equations 

- 

1585 

Assuming that the diffraction of the elastic wave around the sphere 

begins at T = 0, and setting 

~=~‘o+‘p1+‘p2+**~, Y = $1, rD,=cc(z--T) (2.3) 

we reduce the problem to solution of wave equations for Q~, yyl ad 92 
with the boundary and initial conditions 

a2’pl 
~ = A(pr, 

a2’p? 
at2 = A% + J? (AR), 

8291 
iW x = AW2 

8% 
-F=- 

acosfJ-- && (sinBgl), g 10 

a$1 __ X - 
ar 

asinA+!$-$I for r = 1 

(2.4) 

‘PI =I ‘p2 = qJl = 0 for T < 0, cpl = ‘pz = $JI = 0 for T>O on S- 

nus, we have the following theorem. 

Theorem 2.1. ‘lhe problem of the diffraction of an elastic wav.e around 

a sphere, described by system (2.4), is equivalent 161 to a mixed Cauchy 

problem or to an auxiliary problem of flow around the corresponding 

four-dimensional oblique cylinder which is semi-infinite with respect to 

the T-axis, the flows consisting of two steady supersonic streams of 

ideal gas, M = J2 and M = 4 (1 + b-*), at the small angle of attack a. 

Solving the auxiliary problem by a method analogous to the method of 

Volterra for the three-dimensional case, we obtain 



Ike TO and T, are the parts of the surface of the four-dimensional 

cylinder cut off by the cones of influence 141 from the point (I, 8,, 

TV, 6,) [6! ; 0 is the four-dimensional volume bounded by the surface of 

the cone of influence, t,he surface TO and the wave surface; the function 

1 .I =~~ * ___ ($ __ T) i c’ (;(-dr. -:;:)Y; -(Li;--~~--~‘q~;-:qF 

l’,’ (t,, -- T, . . .) .c= 1-I (b (z,, - z), . . . .) (2.6) 

As in the two-dimensional problem, an asymptotic solution of problem 

(2.4) can be found for 1 srge T. Tt. can be shown that for 1 arge values 

of 7 

where 

Ihe solution for the function P)~!T‘, 0, Tf can be written out analo- 

gously. ProbJ em (2.4) can be generalized cl3 to the case of a deformable 

sphere and for 

3. On the theory of diffraction of plane electromagnetic 
waves. Nonsteady problems of diffraction of plane electromagnetic 

waves around convex, perfectly conducting bodies of revolution will be 

considered, when the wave is propagating along the axis of revolution. 

We shall assume that a plane electromagnetic wave is incident on a 

perfectly conducting body which is surrounded by a homogeneous dielec- 

tric with the parameters E’ and PO. The wave excites surface currents 

on the surface of the body; these, in turn, become the source of the 

scattered or diffracted fiel d. 

‘Ike electric and magnetic intensities E and H satisfy Maxwell’s 

equations 

div II --z 0, curl E .-_ _ CtT !‘-!!_ 
C dt t 

div E = 0 (3.1) 
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and the boundary condition 

n x ,;, -I- E,l = 0 (3.2) 

on the surface of the perfect conductor, where fi is the normal to, the 

body; E, and E, are the electric intensities of the incident and 

scattered waves, respectively, on the surface of the body; and c is the 

speed of light. 

In view of the symmetry of the problem relative to the axis of rota- 

tion, we obtain 

where the function II is called the Hertz potential. 

In the derivation of relations (3.3) the Hertz vector G is taken as 

G = (0, e,II, 0} (3.4) 

If 

G = {elII, 0, 0} (3.5j 

then h,ll should appear in the parentheses in (3.3) instead of h,TT. 

Substituting (3.3) into (3.1), we obtain the wave equation in general 

orthogonal curvilinear coordinates cl, t2 and t3 for the potential II 

z ,‘I 

--I ! 
~~~~. A!!;$? ;L$ + ?&!$J~)‘~ = ;$ T!; 

h&Jig L 1’$ 
(3.6) 

Here h,, h, and h, are the Iam& coefficients. 

Since the body is one of revolution 

h, = h, (El, Ez), h, (El, E,) = h,, h, = h,’ (El, E,) / m 

the coefficients of equation (3.6) do not depend on ES, and, therefore, 

the function 11 = lI({,, <z). Condition (3.2) assumes the form 

where El = cl0 is the equation of the surface of the body. 

‘Ihe potential ll also satisfies the conditions 
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II = n, (5, y, 2, t) for t< 0, n = II, (5, y, Z, t) for t >O (3.8) 

on the boundary of the scattered or diffracted field. We set 

n (5, y, 23 t) = no (G y9 23 t) + cp (5, y, 2, t) (3.9) 

where 110 is the potential of the incident field, and substitute (3.9) 

into equation (3.6) and into conditions (3.7) and (3.8). We then obtain 

the following system to determine the perturbed potential 9(x, y, z, t): 

for EI == El0 

cp -= 0 for t,(o, Cp = 0 on S- 

Let us consider some special cases. 

1. Diffraction of a plane electromagnetic wave around 

circular cylinder. We shall assume that the front of the 

electromagnetic wave is parallel to the z-axis. Setting, 

lI,=a y--.-.L_t ( I/EPp 1 
we reduce system (3.10) to the form 

!g+f?E+-f!?$3p$ 

?!!I=-_? 
dr 

sin0 for r = r. 
TO 

an infinite 

incident 

for simplicity 

(3.11) 

(3.12) 

cp = 0 for t < 0, cp = 0, for t>O onS- 

Here a is some small quantity introduced into the solution of the 

problem for convenience and which can be eliminated at’the end; r and 8 

are polar coordinates. 

It is easy to see that system (3.12) also describes the problem of 

diffraction of a weak shock wave around a circle Cd. Therefore, Ed 
Q(r. 8, t) on the circle satisfies the linear integral equation 

(3.13) 
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where 1 is the surface of the cylinder in the auxiliary problem cut off 

by the cone of influence from the point (r/r,, = 1, 8,, -r,,). 

For large values of T (or of t) 

If 

. cp (rl, l3, T) = & s K1,(rlq) e*+ dq 
L KI (4 1’ 

(3.14) 

&(z,Y, 2, t) = fly/r,--r) 

then, using the Duhamel integral, we obtain 

(3.15) 

cp,(r,,e,~) =f(O)cp(r,,e,~) + f’(E)f~(r~,e,~-t)dE s (3.16) 

0 

where 9I is the Hertz potential in case (3.15). For large values of T 

\ [ f (0) + i 1’ (E) eqEdc ] ;;;;;I’ eq’ .$ (3.17) 

i G 

In the case in which the front of the incident wave forms an angle y 

with the z-axis, the problem reduces to that solved above [61 where the 

quantity T must be replaced by the quantity 

q = tm-l y (T sin-l y - 2) 

2. Diffraction of a plane electromagnetic uave around a sphere. We 

shall consider that the incident electromagnetic wave is propagating 

along the z-axis in the positive direction (Fig. 4). In dimensionless 

spherical coordinates (r, 8, 6) the perturbed Hertz potential 9 satis- 

fies the system 

I a -- 
r* i3r i 1 rlz f-$&-- -$-(sine!$)=g 

@J _= 
ar 

-acosO -(Il. + cp) for r = 1 

cp = 0 forr <O on S- 

Here it is also assumed that 

IT, (22, y, 2, T) -= a (z - t) 

(3.18) 

It. is not difficult to see that problem (3.18) is equivalent to the 

problem of diffraction of a weak shock wave around the sphere [61 and, 
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therefore 

where YI has the form (2.5); T is the hypersurface of the appropriate 

four-dimensional cylinder r = 1 which is cut off by the cone of in- 
fluence from the point 0. = 1, B,, O,, To). 

If case (3.5) is considered, the second condition in system (3_f6) 
takes the form 

iw .-.- z - a ~0~0 
ifr 

for r .= 1 

and problem (3.18) is identical to the problem of diffraction of a Weak 

plane shock wave around the sphere. For large values of T we may set 

cg -- c(? = - 2a cos e/t* (r,r f 

It can be shown that 

In case (3.5), we set 

Problem (3.18) can be generalized to the case 

3. SoIutian of system (3.10). Theorem 3.f. The general problem of 

diffraction of a plane electromagnetic wave around an arbitrary convex 

body of revolution is equivalent to tbe problem of flow around the cof- 

responding semi-infinite four-dimensional cylinder $ = <lo1 the flow 

consisting of a supersonic stream of ideal gas. M = \E 2, at a small angle 

of attack. 

We obtain au integral equation of the form 
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for the potential q(x, y, Z, t) on the surface of the arbitrary body of 
revolution. Explicit asymptotic expressions for q~ at large T can be ob- 
tained only for the circular cylinder and the sphere. 

Analogously, problems of diffraction of plane electromagnetic waves 
around bodies of arbitrary shape (or around a group of bodies) can be 
solved by reducing them to the corresponding mixed Cauchy problems in 
the space (x, y, z, 7). 

Note. Problems of diffraction of elastic and electromagnetic waves 
reduce to the solution of the corresponding singular integro-differential 
equations. To solve these equations numerically it is more convenient, 
for instance in equations (1.12). (1. la), (1.22)) etc., to introduce the 

functions 

I. dC’ . 

K, (to- T, ~0 - 5, yo - Y) = 1\ - a~, dT> Zi,(Z,-- T, To-- x, y. = y) = A-dr 
s 

The function K is continuous on 1 and goes to zero along the entire 
characteristic part of the boundary of tbe region 1; the function KI is 
continuous on 1 and goes to zero at the point (x,, ye, me). Therefore, 
by covering the region 1 with a sufficiently fine net, it is possible 
either to eliminate the neighborhood of the point (x,, ye, me) or to 
approximate the integral expressions in the neighborhood of (xc, ye, T(,) 
in some manner and to reduce the numerical solution of the integro- 
differential equations to simple quadratures over the remaining Part 
of z. 

The uniqueness of the solution of the given integro-differential 
equations follows from their very construction, or can be rigorously 
proved by the usual methods. The existence of the solution is proved by 

the method of Hadamrd. 
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